, , , , ,

Future Energy: China leads world in solar power production

Ten years ago, Geof Moser had just graduated with a master’s degree in solar energy from Arizona State University – but he didn’t feel much opportunity lay at his feet in his home country.

So he headed for China.

“The solar industry was fairly small and there weren’t a lot of jobs,” he remembers. “Just a few for installation.” But the Chinese government had big ambitions to expand solar and Moser saw his chance.

He spent some years accumulating knowledge about the Chinese solar industry, before co-founding Symtech Solar, which designs solar panel systems using Chinese parts.

Market access

The idea is to make it easy for organisations outside China to access components without the hassle of having to source and assemble lots of different parts.

“You don’t want to buy a car door or a car engine, you want to buy a car,” he explains.

Symtech now has a portfolio of small projects dotted around the world and it is hoping to increase installations in the Middle East, thanks to a new office in Oman.

Moser isn’t the only US entrepreneur who turned to China. Alex Shoer, of Seeder, helped to launch a business that brings solar panels to the roofs of buildings within the country.

He deals with foreign businesses who, say, want to make their Beijing office a little greener. The firm says it has so far erected three megawatts’ worth of solar installations, with another 28 megawatts on the way for various clients.

“We will source the capital to finance, pay for the whole project and then sell the power at a discount,” Shoer says. Again, the model relies on sourcing the right parts at a favourable cost.

These kind of installations are known as “distributed generation” projects, in which electricity is produced on a small scale, at or very near to a specific point of consumption.

Within China, distributed generation is growing at an extraordinary rate, driven in large part by farmers who use the panels to power agricultural equipment that might not be connected to the grid.

Shoer comments that he was attracted by Beijing’s commitment to the solar industry. For years it has encouraged local authorities to do what they can to boostproduction, research and development.

Renewables growth

China’s rapid expansion of renewable energy facilities has since caught headlines around the world.

According to the International Energy Agency (IEA), the country installed more than 34 gigawatts of solar capacity in 2016 – more than double the figure for the US and nearly half of the total added capacity worldwide that year.

Early figures for 2017 show China has added another eight gigawatts in the first quarter alone.

“It’s a huge market,” says Heymi Bahar at the IEA. Most of the world’s solar cells are made in China and Taiwan, he adds – more than 60%.

The impressive scale doesn’t stop there. The largest solar farm in the world – Longyangxia Dam Solar Park, all 30sq km of it – is a Chinese project. And the country recently opened the world’s largest floating solar farm, in Huainan, Anhui Province.

It has been constructed over an old coal mine, which over the years had filled with rainwater. Sungrow, the Chinese firm that provided solar cells for the venture, says its system automatically monitors current and voltage generated by the cells, along with humidity, which can affect their efficiency.

Because of the abundant water nearby, cleaning the panels – an endless task for solar farmers – will be easier, according to those behind the facility.

These mega projects have become possible, and indeed more common, thanks to the rapidly falling cost of solar cells.

“What we were all hoping for 20 years ago when the idea of cheap solar was just a dream, was that someone would come into this on an industrial scale and drive down the cost,” recalls Charles Donovan, at Imperial College Business School.

“That is exactly what China has done.”

But today, solar energy production accounts for just 1% of China’s total energy demand. A huge 66% of demand still comes from coal, something that the country’s National Energy Administration wants to change drastically by 2050 – not least because of China’s well-known air pollution problems.

But by that key date of 2050, a very different mix of energies could be powering China, should some projections become reality. One government report even suggested that renewables could supply 86% of the country’s energy needs, with solar providing around a third of that.

Can China do it? According to one expert observer, the answer is, “maybe”.

“What China is trying to do is rationalise a very large, fast growing system,” explains Jeffrey Ball at Stanford University’s Center for Energy Policy and Finance. Ball is the lead author of a recent report that details China’s success as an innovator in the solar panel industry.

Lofty ambitions

But as Ball points out, the revolution has not been without teething issues. For one thing, Chinese subsidies, which some argue are unsustainable, have not always been smoothly administered. The “feed-in tariff”, for example, often offered to solar companies that generate electricity, has sometimes been paid late.

“The government is often a year or more late in delivering that revenue – that wreaks havoc with the financials on a project,” says Ball.

The value of subsidies has recently been cut, too. What’s more, China’s large solar farms are largely in less densely populated areas in the west of the country, far from population centres like Beijing or Shanghai, in the east.

Building extra grid capacity to transfer it is time-consuming and expensive. This leads to a problem known as curtailment – a solar farm produces, say, 20 megawatts of electricity but can only find buyers for 15 megawatts.

More from Future Energy

“Depending on who you talk to in the provinces that have by far the largest amount of solar production, curtailment rates are 30% and in some cases significantly higher than 30% – that’s extraordinary and that’s a real problem,” explains Ball.

Whether China can achieve its lofty ambitions for renewable energy remains to be seen – but it has certainly proved its ability to foster a world-leading solar industry. For US entrepreneurs like Geof Moser, that’s enough to propel his own business towards further growth for now.

“The reality is that renewable energy is very cheap – especially solar energy,” he says. “And the reason is China.”

Reference link: http://www.bbc.com/news/business-40341833

, , , , , , , , ,

China Paves Way to Allow Clean Energy Purchase from Nearby Distributed Sources

Corporations keen to source clean energy understand the advantages of distributed generation. Apple, a leader in corporate renewable energy purchase, wrote in its Environmental Responsibility Report that “Apple’s renewable energy approach goes a step further to make sure we ‘deposit’ on the same grid as the energy we are ‘withdrawing.’” This preference is because distributed generation (DG) faces less power loss during transmission, no curtailment risks, and corporates can contribute to local economies and communities.

But China’s not-so-liberal power market has so far prevented a consumer from buying electricity from nearby distributed generators. Electricity from a rooftop solar project, for example, can either be used by the building directly beneath, or be sold back to the grid – and dispatched just like electrons from any other source.

This past month, China’s National Energy Administration (NEA) finally made a big step to break that restriction, by introducing a draft policy on “distributed power trading pilots.” In the draft, distributed energy projects can sell power to nearby consumers, and the grid company will charge a “transmission fee” when delivering power. Some preliminary details below:

  • For the first batch of pilots, power retail would only be allowed in very small areas. Power sellers and buyers should be in the same 35kV power supply network – which is normally a district in cities like Shanghai – or the same 110kV network when it is the lowest voltage network, such as in industrial parks.

  • Distributed power generators can sell power in three ways: 1) They can trade directly with an end consumer within an 110kV network; 2) They can also delegate the grid company to sell power; 3) Or they can choose not to participate in the retail market and have the grid company purchase all of its electricity. For a buyer, this means it can purchase power from a DG source directly or from the grid for DG electricity.

  • The government will acknowledge clean energy purchased through this mechanism when measuring a company’s clean energy and energy saving efforts. For carbon credits, the buyer and seller can settle attribution among themselves directly.

  • The policy is subject to distributed power projects with installed capacity below 20MW. City- and province-level grid companies will set up trading platforms.

Testing the water cautiously, the government will announce the first batch of pilots by May 31st, and trading is to start on July 1st. At the end of 2017, it will decide whether and how to expand the pilot area.

We expect power retail pilots to be set up in limited areas at first – an easy starting point would be in industrial parks where power networks are more independent. Even with the small scale, this is an encouraging sign that Beijing is opening up power retail specifically for the distributed market. Furthermore, NEA specifically mentioned that the retail policy will not affect the current subsidy scheme for distributed renewables.

For corporations, this policy means that in the near future, more clean energy sourcing options will be available. Corporates will be able to support distributed projects that will create environmental and economic value locally.

,

Battery Storage Powers Los Angeles’ clean energy transformation

18aa9b1c-9529-4b46-b02a94974f3413fc

Los Angeles, a city used to suffocate from smog more than China today, is making its way to a clean energy transformation.

Decades ago, blue sky #nofilter was not an everyday blessing in the United States, not to mention in Los Angeles. The city started to suffer from smog attacks since more than half a century ago, and has been known for its polluted air, together with its balmy weather and glamorous lifestyle.The whole city used to be shrouded in a veil of thick brown and grey smog.

Blue sky #nofilter was not an everyday blessing for LA.

The battle against air pollution went on for 50+ years. Having set up air quality control board, emission limits , regulations on clean gasoline and clean energy, Los Angeles finally managed to bring a blue sky back to its residents. However, its electricity still largely remains to be sourced from natural gas, a fossil fuel. Traditionally, every summer afternoon, engineers will turn on what they call a ¨peaker¨, a natural gas powered station in the Long Beach. The peaker ensures that people could enjoy air conditioners, TVs, and other appliances when they get home right after work.

In October 2015, the peaker burst out a disastrous accident, known as the Aliso Canyon Gas Leak, which  put tremendous  pressure over the electricity grid, exposing the whole city to unexpected power outages at any moment. The local government asked Southern California Edison, the grid company, to find a energy solution so such leak won’t happen again.

The Aliso Canyon Gas Leak exposed the whole city to unexpected power outages.

Among a variety of offers by utilities from natural gas power plants, energy efficiency to renewable energy, the local government decided to walk away from fossil fuel. Instead, it picked AES Corp, an renewable energy company, to design and build a massive grid storage battery in the upcoming five years to counter summer peak moments. It will be one of the world’s largest storage lithium batteries, capable of holding and delivering over 100 megawatts of power an hour for four hours.

The gas leak was a blessing in disguise.

Five years from now, the customary afternoon peak will still be there, but the need for more fossil fuel will be gone. The “peaker” will be replaced by a battery that will use the area’s morning solar power and evening wind power to charge up. These batteries spare away people’s worries on unexpected power outage, and aid California in its pursuit of aggressive carbon reduction goals of reducing 80% by 2050.

The “peaker” will be replaced by a battery that will use the area’s solar and wind power.

Never before had an energy storage device won a competition against a conventional power plant. This five year plan for battery storage  will rid Los Angeles of its infamous reputation as the ¨smog city¨.

Apart from the five-year contract with AES Corp, Los Angeles has also picked Tesla for a  public energy storage plan in this September. Tesla is to manufacture, transport and install a 20 MW/80 MWh powerpack system within 3 months. When fully charged, this system will hold enough energy to power more than 2,500 households for a day or charge 1,000 Tesla vehicles. The system will charge using electricity from the grid during off-peak hours and then deliver electricity during peak hours to help maintain the reliable operation of Southern California Edison’s electrical infrastructure which feeds more than 15 million residents.

tesla-powerpack-backup-battery-for-los-angeles-537x301

Never before had an energy storage device won a competition against a conventional power plant.

Clean energy’s victory in California is not won by any single clean energy company; this is a broader win of the whole industry. Atlas Gas Ltd., a Canadian clean energy company, also won a 20 MW contract with Los Angeles. In August 2016, San Diego also signed a contract with AES Corp to build a 37.5 MW  battery storage facility.

%e5%82%a8%e8%83%bd%e6%95%b0%e6%8d%ae

The decreasing cost of battery storage is smoothing out solar and wind power’s generation curve and making clean energy a reliable part of the base load in any grid system anywhere. Just like what Elon Musk said, battery storage  will take solar to the next level.

We are excited to see Los Angeles achieving its clean energy transformation and leaving its smoggy days behind. It is an inspiration and model for Chinese cities to better use clean energy to return blue sky to our people.

 

,

The Summer of 2030: Please Don’t Be This Hot. Please.

Why is it so hot this summer?

The temperature can’t stop rising every summer!

The highest average temperature ever recorded, 40°C!

Climate change should not just concern heads of states; it concerns every single one of us.

This week in Hangzhou, China and the U.S. have both ratified Paris Climate Agreement ahead of the G20.  In December 2015, 195 countries reached the agreement to put the world on track to limit global warming to well below 2°C by 2030. In other words, 42°C is the temperature threshold that we have pledged to stay away from in the next 15 years. If we continue with the status quo, we are on our way to a 2030 summer with a high of over 43.5°C.   

How did the global temperature get here? A viral GIF from climate scientist Ed Hawkins illustrates the global temperatures from 1850 to 2016 and explains everything.

global-warming
July is the hottest month of the year. Another NASA illustration  shows exactly how hot this summer has been. Global warming seems to have gone out control, with temperature increasing almost by 2 degrees.  

monthlyanoms_gis_201607

Source: http://earthobservatory.nasa.gov/IOTD/view.php?id=88607

NASA also says that earth has never concentrated so much CO2 in the past 8000 years! ¨It is a serious matter for the entire global community including the guy on the street,¨ says Hoesung Lee, head of UN´s Intergovernmental Panel on Climate Change (IPCC).

However, if everything were business as usual, what would happen?

According to Mckinsey, annual GHG emissions in China would rise to 22.9 gigatons by 2030, from 6.8 gigatons in 2005. In this scenario, increased oil demand would require imports of about one billion tons a year. Coal demand would more than triple, demanding annual imports of 3.7 billion to 4.2 billion tons. Under that scenario, we would be suffering a 2030 summer with the highest temperature hitting 42°C-43°C!   

How can we reduce carbon emissions and put climate change under control? We believe rooftop solar is one of the most important solutions. This idea also strikes a chord with the leaders of United Arab Emirates (UAE), whose economy large relies on oil export. They announced that, by 2030, all rooftops in Dubai will be covered by solar panels

If China follows suit, how impactful it will be in terms of carbon emission?  

Let´s do the calculations. According to Energy Efficiency Policies on Future Cities in China, by 2030 the total area of building construction will reach 65 billion square meters.

Using Seeder´s solar calculator, we can know that every 1000 square meters of rooftop, when equipped with solar PV, would generate 107350kWh of electricity , and reduce 75 tons of carbon emissions. So if every building is covered with rooftop solar, carbon emissions would be reduced by 4.87 gigatons, more than half of China’s GHG emission levels in 2005.

Of course, this scenario of 100% solar rooftop is hard to achieve in reality. But this calculation proves the true potential of rooftop solar. Seeder’s mission and vision are exactly in this direction. We believe in a sustainable future that is driven by solar, with less extreme climate and more blue skies.

SEEDER-LOGO-01-1

Solar is so popular right now, we’re facing a shortage of panels!

SunTech solar panel maker from china

© SunTech

From glut to shortage for first time since 2006

It’s worth repeating again and again: The price per watt of solar power is going through the floor while worldwide installed capacity is going through the roof (up 53x in the past 9 years!). This is great for the environment, because for each solar panel that goes up, demand for electricity from dirty sources goes down, causing a great virtuous cycle of demand destruction. But there are limits to how fast an industry can grow, and we’re apparently starting to hit those limits, at least temporarily, and production will need to further increase to keep up.

Demand is expected to go up 29% this year, so it’s not surprising that supply has a hard time keeping up. That’s exactly why Elon Musk and SolarCity say that we will need many solar gigafactories.

The last time supply was tight, in 2006, the solar industry installed about 1.5 gigawatts that year. Contrast with today: The industry expects to install as much as 52 gigawatts this year and 61 gigawatts in 2015. That’s about as much as is actually being produced by viable factories.

image

Renewable Energy Policy Network/Screen capture

Back in 2011, I wrote something called The Solar Industry is Like a Yo-Yo to explain the boom-bust cycle facing solar panel makers:

“For about as long as it has existed, the solar power industry has been going from boom to bust, and vice versa. It is growing fast, and has been for years, but forget about a smooth upward curve: Up close, the trajectory looks like the Alps.”

image

Renewable Energy Policy Network/Screen capture

Busts might be bad for individual companies, but they aren’t necessarily bad for solar power itself, as we’ve seen in the past few years. A glut of panels meant that prices fell and a lot more solar power was installed than if prices had been high.

Now that demand has grown to match, and maybe now exceed, supply, the opposite will happen. Solar prices will go up, or at least not fall as fast, and more solar panel makers will make money. This will attract competition and new investments in additional capacity until supply once again overtakes demand and prices fall because of the glut…

Wash, rinse, repeat.

image

© BNEF

Originally published on Bloomberg.